亚洲综合伊人,成人欧美一区二区三区视频不卡,欧美日韩在线高清,日韩国产午夜一区二区三区,大胆美女艺术,一级毛片毛片**毛片毛片,你瞅啥图片

您當前的位置是:  首頁 > 資訊 > 國內(nèi) >
 首頁 > 資訊 > 國內(nèi) >

智能質(zhì)檢升級換代:為什么“關(guān)鍵詞”不夠用了?

2020-02-24 15:27:17   作者:   來源:CTI論壇   評論:0  點擊:


  市面上有很多面向銷售和客服人員的語音質(zhì)檢系統(tǒng)、文本質(zhì)檢系統(tǒng),絕大部分產(chǎn)品實際使用的是基于“關(guān)鍵詞+正則表達式”的機器質(zhì)檢系統(tǒng)。

  這種方法的主要優(yōu)點是部署和上手使用都比較快,主要缺點是存在非常嚴重的漏檢情況。就像一個漏孔很大的篩子一樣,難以滿足企業(yè)對質(zhì)檢的需求越來越精細、對質(zhì)檢效率要求越來越高的發(fā)展趨勢。

  因此,在“關(guān)鍵詞+正則表達式”之外,我們開始越來越多地為客戶提供基于“語義點+機器學習”方案,并且在實際使用中為很多質(zhì)檢項帶來 2~10 倍的效果提升。也就是說,能夠多發(fā)現(xiàn) 2~10 倍的問題。對于企業(yè)而言,這就意味著他們可以更快、更全面地提升服務質(zhì)量或者實現(xiàn)合規(guī)升級。

  下一代機器質(zhì)檢:從關(guān)鍵詞到語義點

  語音和文本質(zhì)檢的主要任務是找出不合格、不合規(guī)的地方,即減分項,通常也被稱為“負向質(zhì)檢”(另有一種任務是找出做得好的地方,即加分項,通常也被稱為“正向質(zhì)檢”)。企業(yè)使用傳統(tǒng)基于“關(guān)鍵詞+正則表達式”的產(chǎn)品做質(zhì)檢,所遇到的最主要問題是“找不全”,通常會漏掉很多不合格、不合規(guī)之處,導致質(zhì)檢效率大打折扣?匆粋實際對比的例子。某互聯(lián)網(wǎng)公司的基礎質(zhì)檢項“服務態(tài)度問題”,在我們的實際應用中:使用傳統(tǒng)“關(guān)鍵詞”方案,一天的數(shù)據(jù)中能找出 13 條,100% 是正確的;使用新的“語義點”方案,能找出 134 條,其中 72% 是對的。所以從最終正確的條數(shù)來看,新的“語義點”方案多找出了 8 倍的問題。

  再看一個實際的例子。“恐嚇威脅”是貸后資產(chǎn)管理領域的基礎質(zhì)檢項,即催收員不允許在電話里“恐嚇威脅”債務人。在我們的實際應用中:使用傳統(tǒng)“關(guān)鍵詞”方案,四天的數(shù)據(jù)中能找出 316 條,其中 55% 是正確的;使用“語義點”方案,能找出 2203 條,其中 72% 是對的。從最終正確的條數(shù)來看,174條對比1596條,新的“語義點”方案能多找出 9 倍的風險。

  原因其實很簡單。如果使用基于“關(guān)鍵詞+正則表達式”的方案,方法是用關(guān)鍵詞的組合來涵蓋每個質(zhì)檢項的不同表達方式——但是你可以寫10個關(guān)鍵詞,100個關(guān)鍵詞,卻永遠不可能窮盡,因為語言的表達方式是非常多樣的、千變?nèi)f化的,必須通過整個句子的上下文語義才能做出更準確的判斷。

  上下文語義質(zhì)檢的技術(shù)原理

  語義點+機器學習的方案,目標是訓練一個機器學習算法模型,使之能夠判斷關(guān)鍵詞未覆蓋的句子是否命中了質(zhì)檢項。我們以另一個貸后資產(chǎn)管理領域常見的質(zhì)檢項“暴露客戶隱私”為例。從標注到訓練模型,再到最后上線使用,新的“語義點”方案大致可以分為三個步驟。第一步,使用我們的“標注工廠”產(chǎn)品,通過人工的方式,將是“暴露客戶客戶”的句子標記為“正例”,將不是“暴露客戶隱私”的句子標記為反例。

  

  第二步,將一定規(guī)模的經(jīng)過標注的正例和反例都“喂”給訓練器,讓訓練器學習到一個算法模型,這個算法就能用來判斷新句子是不是涉嫌暴露客戶隱私。

  第三步,在質(zhì)檢產(chǎn)品中,系統(tǒng)就可以標記出所有命中“暴露客戶隱私”語義點質(zhì)檢項的句子,復檢員可以快速定位到該質(zhì)檢項所處的位置,迅速進行核實。此外,復檢員每一次復檢的操作,都相當于對算法模型進行了一次反饋,會幫助算法模型變得更準。


  最終,我們發(fā)現(xiàn)通過“語義點”方案能比關(guān)鍵詞的方案多找出數(shù)倍的不合格、不合規(guī)之處,達到召回率(找的全)、準確率(找的準)均在 80% 以上的效果。

  上下文語義質(zhì)檢的底層邏輯從底層邏輯

  上看,基于“關(guān)鍵詞”的方案是字符級別的,并不關(guān)心句子的語義,而基于“語義點”的方案是句子級別的,非常關(guān)心句子上下文的邏輯和語義。兩者并不在同一個維度?梢韵胍,未來關(guān)鍵詞方案越來越難當大任,而語義點的方案會逐步成為主流。

  不過,語義點方案也有一個顯著的缺點“部署成本高”。為了訓練一個語義點的質(zhì)檢項,需要人工標注大量句子,然后訓練和調(diào)試算法模型。因此,大家并不會立即就把所有質(zhì)檢項切換到“語義點”方案,而是優(yōu)先把那些最常見的質(zhì)檢項切換到“語義點”方案。

  總結(jié)循環(huán)智能在教育、金融、互聯(lián)網(wǎng)服務等不同行業(yè)數(shù)十家客戶的服務經(jīng)驗,我們發(fā)現(xiàn)質(zhì)檢項與違規(guī)數(shù)的關(guān)系也存在“二八法則”——20%的質(zhì)檢項貢獻了80%的違規(guī)數(shù),所以將最常見質(zhì)檢項升級到“語義點”方案,即可為整個業(yè)務帶來顯著的效果提升。

  同時,我們也應該了解到,隨著自然語言處理領域新技術(shù)的突破,從字符級“關(guān)鍵詞”方案,向句子級“語義點”方案轉(zhuǎn)換的速度正在加快。過去兩年,自然語言處理領域迎來了繁榮時期。Google 發(fā)表于 2018 年的 BERT 模型,為行業(yè)帶來了全新的技術(shù)思路,具有里程碑意義。2019年6月,作為 BERT 模型的一種重要的改進方案,XLNet 模型在 20 個標準任務集上超過 BERT,并且在 18 個標準任務集上取得 state of the art 成果,包括機器問答、自然語言推斷、情感分析和文檔排序等。

  XLNet 模型由循環(huán)智能聯(lián)合創(chuàng)始人楊植麟博士(第一作者),與谷歌大腦、卡內(nèi)基梅隆大學共同推出。該模型具備編碼超長序列的能力——簡單理解就是可以更好地理解長句子。2019年末,XLNet 被人工智能領域的頂級學術(shù)會議 NeurIPS 2019 接收為 Oral 報告論文(占比 0.5%)。同時,XLNet 也入選了權(quán)威的中國人工智能學會《2019人工智能發(fā)展報告》,被稱為 BERT 之后重要的進展之一。

  循環(huán)智能(Recurrent AI)正是基于原創(chuàng)的、世界前沿的 XLNet 模型,在智能質(zhì)檢產(chǎn)品中的加速向“語義點”方案轉(zhuǎn)換,取得遠超傳統(tǒng)方案的效果。過去一年,我們的智能質(zhì)檢系統(tǒng)獲得多家金融、教育、互聯(lián)網(wǎng)服務領域贏得多家標桿客戶的商業(yè)訂單,包括眾安保險、玖富、CBC、華道、你我貸、人人貸、新東方在線、獵聘等。> 下篇預告下一篇關(guān)于智能質(zhì)檢的文章,我們將向大家介紹,在不同的業(yè)務場景下,關(guān)鍵詞方案如何與語義點方案高效搭配使用,大幅提升質(zhì)檢效率。


【免責聲明】本文僅代表作者本人觀點,與CTI論壇無關(guān)。CTI論壇對文中陳述、觀點判斷保持中立,不對所包含內(nèi)容的準確性、可靠性或完整性提供任何明示或暗示的保證。請讀者僅作參考,并請自行承擔全部責任。

專題

CTI論壇會員企業(yè)

双鸭山市| 成都市| 普定县| 晋江市| 公主岭市| 淄博市| 分宜县| 舟山市| 荥阳市| 旺苍县| 台南县| 鸡泽县| 墨玉县| 韩城市| 甘孜县| 宣恩县| 颍上县| 西青区| 威宁| 临沂市| 彰化县| 曲靖市| 定远县| 闽侯县| 罗城| 洪泽县| 宽城| 丹阳市| 高碑店市| 平果县| 青河县| 田阳县| 翼城县| 修水县| 朝阳县| 汉中市| 开封县| 基隆市| 舒兰市| 贵州省| 青岛市|